
BI [18] ANNULENYL

Iain T. Storie and Franz Sondheimer*

Chemistry Department, University College, Gordon Street, London WC1H OAJ

We report the synthesis of bi[18]annulenyl (bicyclooctadeca-1,3,5,7,9,11,13,15,17-nonaenyl) (3), the first example of a substance in which two macrocyclic annulenes are joined directly. Substance 3 has the same relationship to [18]annulene (1) as biphenyl has to benzene.

It has been shown by Kende et al² that tris(triphenylphosphine)nickel(0) [Ni(TPP)₃] in dimethylformamide cleanly causes coupling of phenyl-, vinyl- and allylic halides. Taking advantage of this discovery, we treated bromo[18]annulene (2)³ with [Ni(TPP)₃] under various conditions. The best, though still very low, yield of bi[18]annulenyl (3) was obtained when the reaction was carried out in dimethylformamide at -30 °C, followed by warming to room temperature. The low yield is undoubtedly due to the instability of the [18]annulene system, which is completely destroyed by many reagents under relatively mild conditions.

Chromatography on alumina (Woelm, act. II), and elution with petroleum ether (bp 40-60 $^{\circ}$ C) - benzene (7 : 3) gave rise to <u>ca</u> 8 % of [18]annulene (1), produced by reduction of 2. Further elution with these solvents (4 : 6), and crystallization from benzene-ether, yielded 3.3 % of bi[18]annulenyl (3) as purple crystals, mp > 150 $^{\circ}$ C decomp. The electronic spectrum of (3) in benzene was complex, and showed λ_{max} 380 nm (ε 163,700), 5 <u>ca</u> 400 sh (102,600), <u>ca</u> 425 sh (59,800), 466 (46,400), and <u>ca</u> 510 sh (12,600).⁶ The ¹H nmr spectrum of $\frac{3}{2}$ at -60 ^oC in deuteriochloroform at 90 MHz [Bruker HFX-90 spectrometer, F.T., 1000 pulses] showed a 2 H doublet (J = 13.6 Hz) at T 0.16 (H², H²), a 20 H multiplet at <u>ca</u> 0.4 - 1.2 (other outer protons), and a 12 H multiplet at <u>ca</u> 12.0 - 13.0 (inner protons).⁷

The mass spectrum of bi[18]annulenyl (3) could not be determined, due to its involatility and relative instability. However, the "dimeric" nature of 3 was confirmed by catalytic hydrogenation in ethyl acetate over a platinum oxide catalyst, which led to the corresponding saturated hydrocarbon [$\underline{m}/\underline{e}$ 502.5475 (\underline{M}^+); calcd. for $C_{2c}H_{70}$, 502.5477].

Bi[18]annulenyl (3) is presumably non-planar, like biphenyl, due to hydrogen-hydrogen interaction in the planar molecule. However, each [18]annulene ring in 3 appears to have the same degree of planarity as [18]annulene itself⁸ in view of the similarity of the ring currents [¹H nmr spectrum of [18]annulene (THF-d₈, -59.5 °C): τ 0.75 (outer H), 12.88 (inner H)].⁹ The low field 2H band at τ 0.16 in the ¹H nmr spectrum of bi[18]annulenyl (3) must be due to the outer protons (H², H²) adjacent to the bond joining the two rings, since it is a doublet, and the J value (13.6 Hz) is essentially identical to that of the trans J value in [18]annulene itself (13.5 ± 0.2 Hz).⁹

REFERENCES AND NOTES

- Unsaturated Macrocyclic Compounds. 126. For Part 125, see L. Lombardo and F. Sondheimer, J. Chem. Research, in press.
- 2. A.S. Kende, L.S. Liebeskind, and D.M. Braitsch, Tetrahedron Lett., 3375 (1975).
- 3. E.P. Woo and F. Sondheimer, Tetrahedron, 26, 3933 (1970).
- See (a) I.C. Calder, P.J. Garratt, H.C. Longuet-Higgins, F. Sondheimer, and R. Wolovsky, <u>J. Chem. Soc.</u> (C), 1041 (1967); (b) F. Sondheimer, R. Wolovsky, and Y. Amiel, <u>J. Amer</u>. Chem. Soc., 84, 274 (1962).
- 5. The ε values are minimum ones, due to the relatively unstable nature of 3.
- 6. By comparison, the electronic spectrum of [18]annulene (1) in benzene showed main maxima at 378 nm (ϵ 297,000) and 456 (28,400).^{4b}
- 7. The ¹H nmr spectrum of 3 was temperature dependent, as that of related compounds, ^{3,4a} and at room temperature essentially only a complex band at <u>ca</u> τ 0.8 1.3 ("fixed" outer protons) could be observed.
- J. Bregman, F.L. Hirschfeld, D. Rabinovich and G.M.J. Schmidt, <u>Acta Cryst.</u>, 19, 227 (1965); F.L. Hirschfeld and D. Rabinovich, <u>ibid.</u>, 19, 235 (1965).
- 9. J.-M. Gilles, J.F.M. Oth, F. Sondheimer, and E.P. Woo, <u>J. Chem. Soc</u>. (B), 2177 (1971).

(Received in UK 15 September 1978)